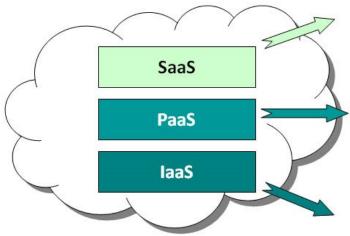
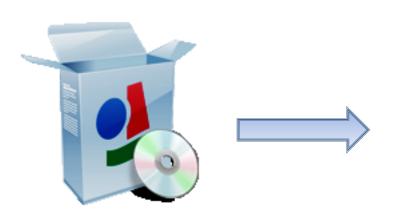
Advance in Software Engineering Research

Service Analytics: Concept and Applications


楼建光

Software Analytics Group, Microsoft Research Dec 10, 2014



Cloud Era

Who Uses It	What Services are available	Why use it?	
Business Users	EMail, Office Automation, CRM, Website Testing, Wiki, Blog, Virtual Desktop	To complete business tasks	
Developers and Deployers	Service and application test, development, integration and deployment	Create or deploy applications and services for users	
System Managers	Virtual machines, operating systems, message queues, networks, storage, CPU, memory, backup services	Create platforms for service and application test, development, integration and deployment	

Software is changing...

On-premise License Small Scale

Online Services
Subscription
Large Scale

amazon

How software is built & operated is changing

Code centric

User centric

In-lab testing

Debugging in the large

Experience & gut-feeling

Data-driven decision making

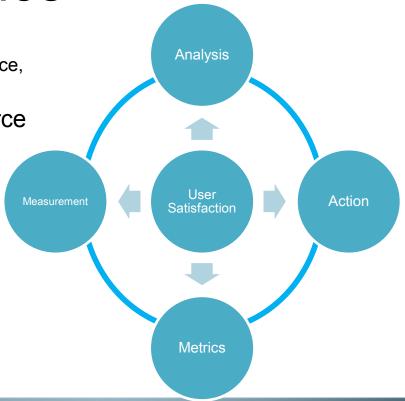
Centralized development

Distributed development

Long product cycle

Continuous release

•••


User-Centric Service

Aspects of user satisfaction

 Usability, reliability, availability, performance, security, privacy, power consumption, ...

 User satisfaction as a key driving force for success

- Prioritization guideline
- Optimization target
- Design goal
- Data-driven user satisfaction
 - Metrics
 - Measurement
 - Analysis
 - Action

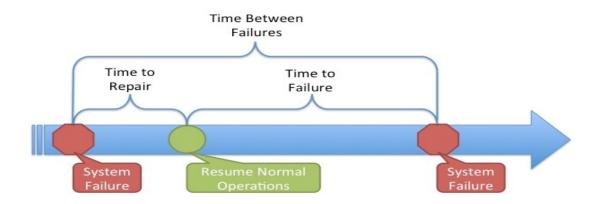
Reality – 故障不可避免!?

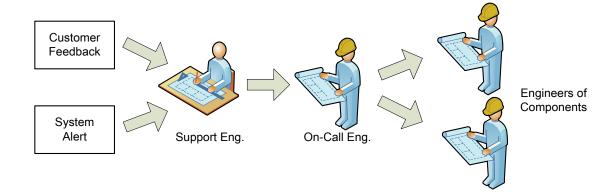
- Google
 - Gmail 在2012/4,2012/6/07,2013/8/17, 2014/1/24 等多次发生故障,影响超3300万人
 - 最近一次Google搜索故障,2014/8/27,搜啥都是车祸图片
- Microsoft
 - 2014/11/18 Windows Azure故障
- 微信
 - 2011/12/14, 2013/4/10, 2013/7/22, 2013/8/20, 2014/10/20

Service Quality Management

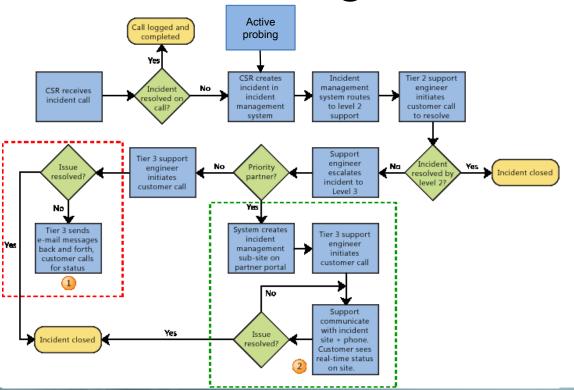
Service-Quality Metrics

MTTR (mean time to repair)


MTTF (mean time to failure)


Managing Process

Incident management (ICM)

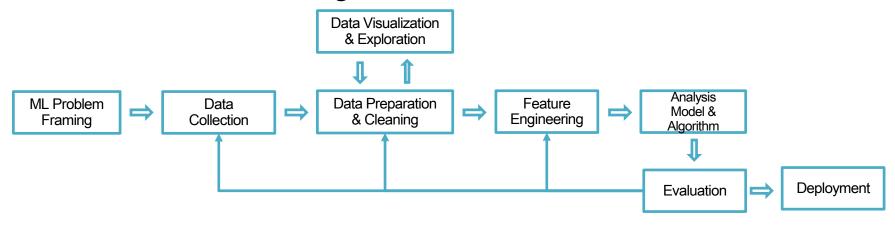

Problem management

Incident Management

Incident Management: An Example

缺点:

- 1. 没有自动化
- 2. 故障只等着用户汇报


What is the Key?

Service engineering processes are moving to data-driven

Formulation: Service Analytics

Service analytics is to enable service *practitioners* to perform *data exploration and analysis* in order to quickly conduct service management tasks.

Logs Generated by An Online Service

Important Scenarios

Problem Detection

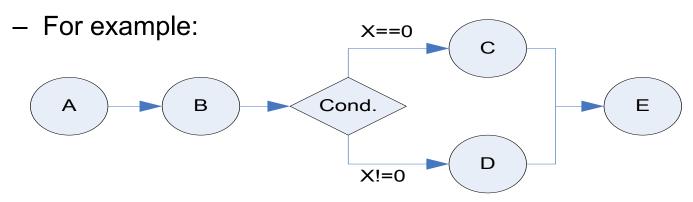
Detect potential issues based on system logs, events, counters, usage data, and customer support records

Problem Localization & Diagnosis

Identify the problem site for a service live site issue, or provide information to help pinpoint the potential causes

Problem
Categorization &
Prioritization

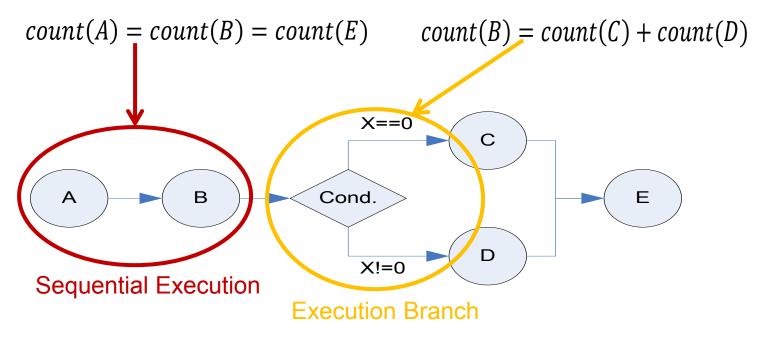
Categorize issues and failures to help understand the trend and prioritize management tasks


Example 1. mining invariants for service problem detection

Background

- Logs are the major source for telemetry and diagnosis
- Manually inspecting logs is not feasible
 - Large scale of system
 - High complexity of system
- Traditional rule/keyword based log analysis tools:
 - Heavily depend on the knowledge of operators
 - Difficult to keep rules updated when components are frequently revised or upgraded

Linear Program Invariant


 A predicate always holds the same value under different normal executions.

$$count(A) = count(B) = count(E)$$

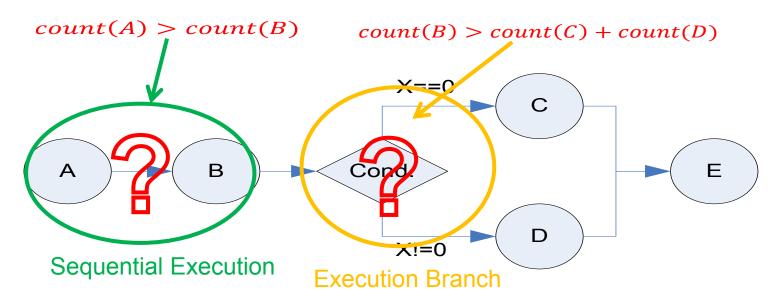
$$count(B) = count(C) + count(D)$$

Invariant and Execution Path

Linear invariants reflect the properties of execution path.

Invariant Violation and Anomaly(1)

 A violation of invariant often indicates a system problem.


 $count(Enter) \neq count(Leave)$

Problem on Critical Section Operations

Invariant Violation and Anomaly(2)

Violated invariants often give diagnosis cues.

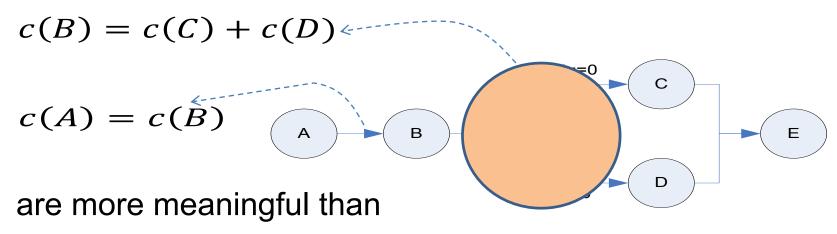
Formulation of Invariant

A linear invariant can be presented as a linear equation:

$$a_0 + a_1 x_1 + a_2 x_2 + \dots + a_m x_m = 0$$

where x_i is the message count of message i.

Given a set of logs, we have

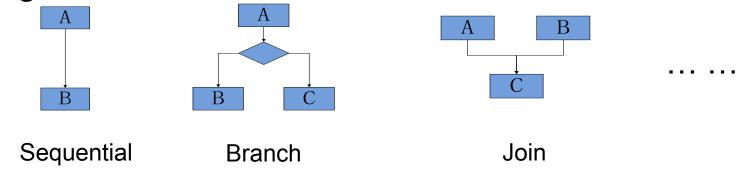

$$\mathbf{X}\theta = \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1m} \\ 1 & x_{21} & x_{22} & \ddots & x_{2m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{nm} \end{bmatrix} \theta = 0$$

where

$$\theta = [\mathbf{a}_0, \mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_{\mathrm{m}}]^{\mathrm{T}}$$

What Is A Meaningful Invariant?

-- Sparse Non-zero Coefficients

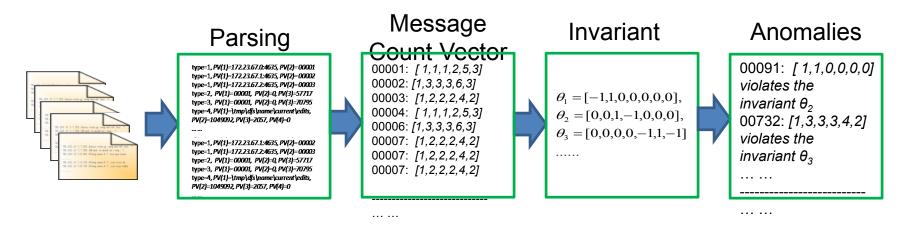

$$c(A) + 3c(B) - 2c(E) - 2c(C) - 2c(D) = 0$$

Any vector in the Null Space of **X** is an invariant; Only sparse invariants are interested.

What Is A Meaningful Invariant?

-- Integer Coefficients

Elementary work flow structures can be interpreted by integer invariants.

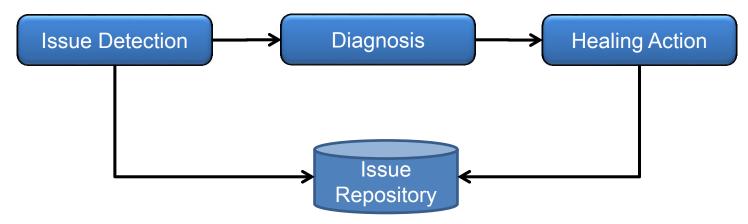

Integer invariants are easy to be understood by human operators.

Problem Statement

 Due to noise pollution, mining invariants is to find integer sparse solutions of regression.

- Challenges:
 - A typical integer sparse regulation problem (NP-Hard)
 - Traditional method is to relax 0-norm to 1-norm. However, it cannot guarantee to find all invariants.

Learning Invariant Overview



Four Steps:

Auto log parsing, Message Grouping and Counting, Search Invariants, and Anomaly Detection

Example 2. Healing Online Service Systems via Mining Historical Issue Repositories

Motivation

Incident Management Process

When a new issue occurred, how to leverage past diagnosis efforts, to identify proper healing action for the new issue?

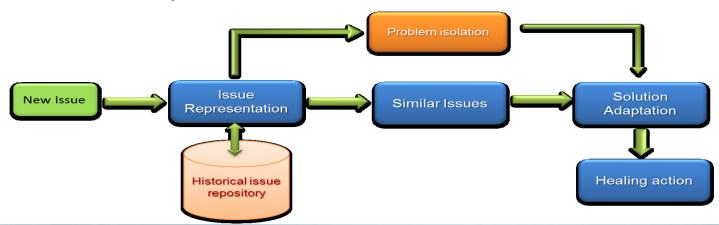
A Simple Example of An Issue

- Symptoms
 - Describing the particular sign and phenomena of the issue
- Solution
 - Recording diagnostic steps and resolution

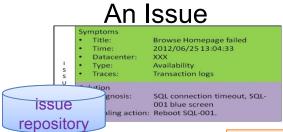
	Symptoms					
	•	Title:	Browse Homepage failed			
	•	Time:	2012/06/25 13:04:33			
I	•	Datacenter:	XXX			
S	•	Type:	Availability			
S	Traces: Transaction logs					
U	Solution					
Е	•	Diagnosis:	SQL connection timeout, SQL-			
	001 blue screen					
	•	Healing action:	Reboot SQL-001.			

Simplified example of an issue

Characteristics of Logs


- Highly redundant events
 E.g., 6 events x1 ~ x6 indicate the authentication failure
 - Bias issue representation
- Many irrelevant events to failure E.g., event d indicates "SQL usage detection"
 - BUT Relevant to issues, e.g., appearing in only SQL-related issues
 - Downgrading discrimination of issue representation e.g., one type of SQL issue needs to reboot SQL; another type needs to patch SQL

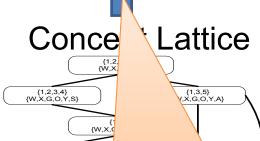
Time	Event	TX ID	Message		
1	а	А	A entering		
1	b	А	created cookie		
2	С	Α	Site = *		
3	d	Α	Detected SQL usage		
6	y1	Α	SQL-Exception		
6	Z	Α	A leaving		
1	а	В	B entering		
3	x1	В	B is not sign building authentication		
3	x2	В			
4	х3	В	create sign		
4	x4	В	create cookie		
4	x5	В	B does not valid		
4	x6	В	redirecting B		
5	z	В	B leaving		


Illustration of transaction logs

Our Approach

- Issue-signature extraction
 - Address the challenges posed by logs
- Similarity-metric definition
 - Cosine similarity based on Generalized Vector Space Model (GVSM)
- Healing-action adaptation
 - Structured healing action + fault localization

Signature Extraction



Parsing log messages

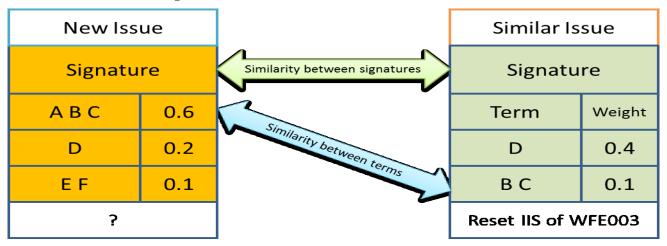
Log Sequences

					Time	Event	TX ID	Message
Time Event TX I			1	a	Α	A entering		
		Time	Event	TXI	1	b	Α	created cookie
Time	Event	1	a	Α	2	С	Α	Site = *
		1	b	Α	3	d	А	Detected SQL usage
1	a	2	С	Α	6	y1	Α	SQL-Exception
1	b	3	d	Α	6	Z	Α	A leaving
2	С	6	y1	Α	1	а	В	B entering
3	d	6	7	Δ	_			

Formal concept analysis

- Reduce redundancy
- Extract trunk/branch relationship of execution paths

Contrast analysis

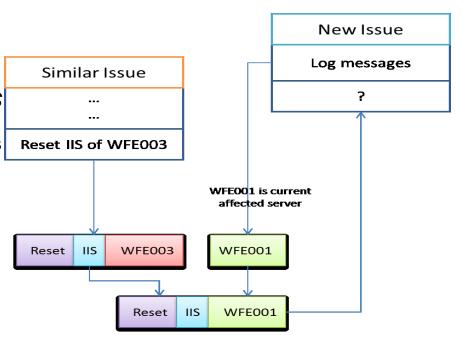

- Reduce weak-discrimination
- Measure correlation with Delta Mutual Information (DMI)

ASE 2012, Essen

{W,X,G,C

{W,X,G,O,

Issue Comparison



Similarity definition: (Generalized Vector Space Model)

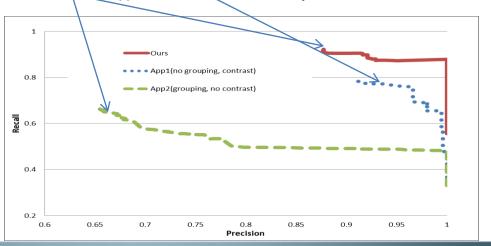
- Similarity between terms
- Similarity between signatures
 - Combine term similarity
 - Encode importance of term using DMI as weights

Healing-Action Adaptation

- Triple structure
 - < verb, target, locaton >
- Verb & Target
 - E.g., "recycle + AppPool", "Reset + IIS
 - Extracted from retrieved similar issues by analyzing their solution descriptions
- Location
 - Specific machine/server name, e.g., SQL23524-001
 - Obtained by applying fault-localization techniques

Evaluation

- 332 issues collected in time period: 11/01/2011~02/18/2012
- 146 issues with documented healing actions and recorded logs


69 issues on service upgrade

77 issues on service interruption or degradation

used in evaluation

---Internal production service: ServiceX

- Effect of our techniques on overall effectiveness
 - Approach1: Ignore highly-correlated phenomenon (Mutual information + VSM)
 - Approach2: Ignore weakly-discriminative phenomenon (FCA + TF-IDF + VSM)
 - Our approach: FCA + contrast analysis

Summary

- Mission of Service Analytics
 - Utilize data-driven approach to help create highly performing, user friendly, and efficiently built & operated online services
- Service Analytics is naturally tied with state of engineering practice of service

 Empowering future software practitioners with data analytics mindset & skills

Advertisement

- We are recruiting!
 - Software analytics researchers (Full-time employee, visiting researchers)
 - Software analytics interns

Q&A